

Was ist neu bei SYNKOPEN? Diagnostik, Therapie

Thomas Klingenheben, M.D.

Conflict of interest - Disclosure

Between 2021 and 2024, Thomas Klingenheben has received speeker honoraria from the following companies:

Astra Zeneca, Boehringer Ingelheim

Definition

(gr.: syn-koptein)

Vorübergehender, selbstlimitierender *Verlust des Bewußtseins* - i.d.R. verbunden mit Tonusverlust, charakterisiert durch schnellen Beginn, sowie spontaner und kompletter Erholung, *aufgrund einer Störung der Hirndurchblutung*.

<u>Dauer:</u> i.d.R. **nicht über 20 s** <u>Abnahme des CBF</u> < 50 ml/100g <u>Abnahme d. O₂-supply</u> < 3 ml/100g/min

Nicht-synkopale TLOCs

Erkrankung	Charakteristische Merkmale zur Unterscheidung von Synkope
Generalisierte Anfälle	Siehe Abschnitt 27 (Neurologische Ursachen). Tabelle 6 (Unterscheidung zwischen Synkope und Epilepsie).
Komplex-fokale Anfälle, Absence-Epilepsie	Keine Stürze, Patient aber nicht ansprechbar, anschließend Amnesie.
PPS oder "Pseudokoma"	Dauer des scheinbaren LOC viele Minuten bis Stunden, sehr häufig, bis zu mehrmals täglich. Augen geschlossen!
Stürze ohne TLOC Kataplexie	Patient immer ansprechbar, keine Amnesie. Stürze mit schlaffer Lähmung, Patient nicht ansprechbar, aber keine anschließende Amnesie.
Intrazerebrale oder Subarachnoidalblutung	Eher zunehmende Bewusstseinstrübung als ein plötzlicher Verlust. Geht mit schweren Kopfschmerzen und anderen neurologischen Symptomen einher.
Vertebrobasiläre TIA	Geht immer mit fokalen neurologischen Symptomen einher, meist kein LOC; wenn Bewusstseinsverlust, dann meist länger als bei TLOC.
Carotis-TIA	Praktisch kein Bewusstseinsverlust bei Carotis-TIA, jedoch ausgeprägte fokale neurologische Symptome.
Subclavian-Steal-Syndrom	Geht mit fokalen neurologischen Symptomen einher.
Stoffwechselerkrankungen wie Hypoglykämie, Hypoxie, Hyperventilation mit Hypokapnie	Von wesentlich längerer Dauer als TLOC, eher Bewusst- seinstrübung statt -verlust.
Intoxikation	Von wesentlich längerer Dauer als TLOC, eher Bewusstseinstrübung statt -verlust.
Herzstillstand	LOC, aber keine spontane Erholung.
Koma	Wesentlich längere Dauer als TLOC.

Klassifikation von Synkopen

(nerval vermittelte) Reflexsynkope

Vasovagal:

- > Orthostatische vasovagale Synkope (VVS): im Stehen, seltener im Sitzen
- Emotionaler Stress: Furcht, Schmerz (somatisch oder viszeral), Eingriff, Phobie Situativ:
- > Miktion
- Gastrointestinale Stimulation (Schlucken, Defäkation)
- > Husten, Niesen
- Nach k\u00f6rperlicher Anstrengung
- Andere (z. B. Lachen, Spielen eines Blechblasinstruments)

Carotissinus-Syndrom

Nichtklassische Formen (ohne Prodromi und/oder ohne ersichtliche Auslöser und/oder atypische Präsentation)

Synkope durch orthostatische Hypotonie (OH)

medikamenteninduzierte OH (häufigste Ursache der OH):

- > z. B. Vasodilatatoren, Diuretika, Phenothiazin, Antidepressiva Volumenmangel:
- > Blutung, Diarrhoe, Erbrechen, usw. primäres autonomes Versagen (neurogene OH):
- reines autonomes Versagen, Multisystematrophie, Parkinson-Krankheit, Lewy-Körper-Demenz

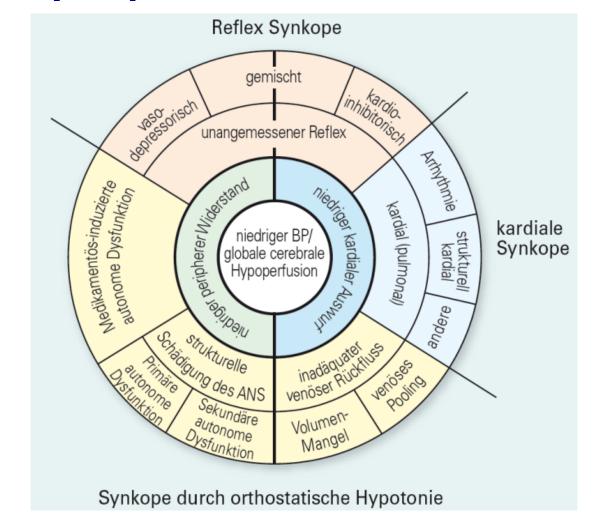
sekundäres autonomes Versagen (neurogene OH):

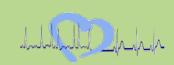
Diabetes, Amyloidose, Rückenmarksverletzung, autoimmune autonome Neuropathie, paraneoplastische autonome Neuropathie, Niereninsuffizienz

Kardiale Synkope

Arrhythmie als primäre Ursache:

Bradykardie:


- > Sinusknotenfunktionsstörung (einschl. Bradykardie/Tachykardie-Syndrom)
- > Atrioventrikuläre Leitungsstörung


Tachykardie:

- > Supraventrikulär
- > Ventrikulär

Strukturell kardial: Aortenstenose, akuter Myokardinfarkt/Ischämie, hypertrophe Kardiomyopathie, kardiale Neubildungen (Vorhofmyxom, Tumoren, usw.), Perikarderkrankung/Tamponade, angeborene Anomalien der Koronararterien, Dysfunktion einer Herzklappenprothese

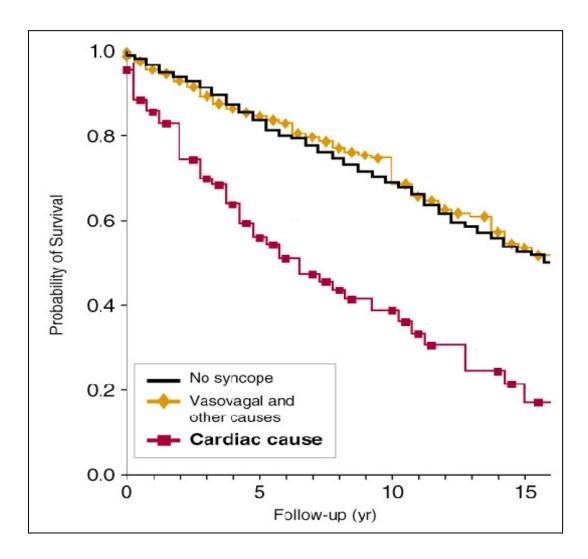
Kardiopulmonal und große Gefäße: Lungenembolie, akute Aortendissektion, pulmonale Hypertonie

S ncope is an unpleasant diagnosis y

for the patient & for the physician

Uncertainties:

- exact cause
- risk of sudden death
- optimal cascade of diagnostic tests





Syncope and Mortality

- Low versus high mortality
- Neurally-mediated versus cardiac cause

Warum tun wir uns so schwer mit der Diagnostik von Synkopen-Patienten?

- Das eigentliche klinische Problem (die Synkope) liegt zum Untersuchungszeitpunkt gar nicht mehr vor!
- ⇒ Abklärung kommt einem "Indizienprozeß" gleich
- Risikostratifikation:
- ⇒ Bedrohliche Ursachen (z.B. für plötzlichen Herztod) nicht übersehen
- ⇒ Keine 'Überdiagnostik' bei harmlosen Ursachen
- Charakteristika des Synkopen-Managements:
- ⇒ Fehlen standardisierter "pathways"
- ⇒ Unzureichende Adährenz an die Leitlinien!
- ⇒ Inadäquate Anwendung diverser diagnostischer Tests!
- ⇒ Hohe Rate fehldiagnostizierter und "unklarer" Synkopen führt zur "Over-Utilization" medizinischer Ressourcen => Kostensteigerung!
- Standardisierte Abklärung und dezidierte "Syncope Units" wären optimal.

- Brignole M, Moya A, de Lange FJ, Deharo J-C, Elliott PM, Fanciulli A et al 2018 ESC Guidelines for the diagnosis and management of syncope Eur Heart J 2018; 39: 1883-1948
- Brignole M, Moya A, de Lange FJ, Deharo J-C, Elliott PM, Fanciulli A et al 2018 ESC Guidelines for the diagnosis and management of syncope -Supplementary Data Eur Heart J 2018; doi:10.1093/eurheartj/ehy037
- Brignole M, Moya A, de Lange FJ, Deharo J-C, Elliott PM, Fanciulli A et al Practical Instructions for the 2018 ESC Guidelines for the diagnosis and management of syncope Eur Heart J 2018; 39: e43-e80
- 4. **Brignole M**, Moya A, de Lange FJ, <u>Deharo J-C</u>, Elliott PM, <u>Fanciulli</u> A et al 2018 Pocket Guidelines for the diagnosis and management of syncope https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Guidelines-derivative-products/ESC-Mobile-Pocket-Guidelines

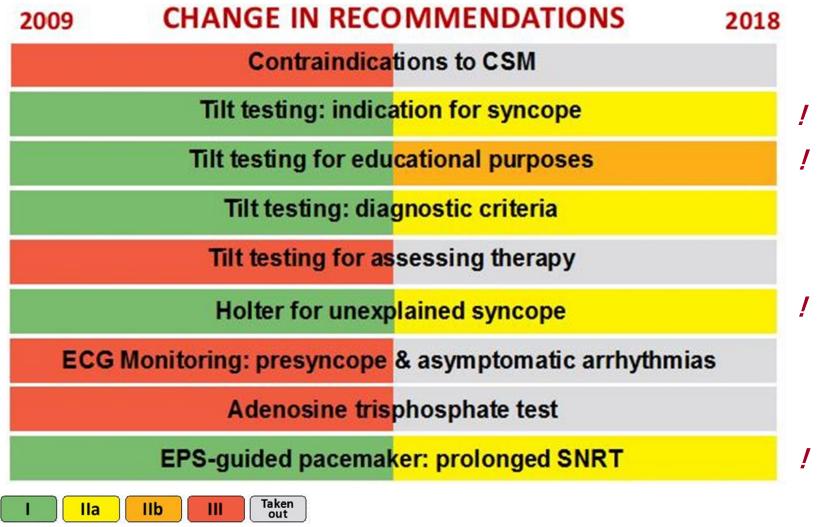
- von Scheidt W, Bosch R, Klingenheben T, Schuchert A, Stellbrink C, Stockburger M (2019) Kommentar zu den Leitlinien (2018) der European Society of Cardiology (ESC) zur Diagnostik und Therapie von Synkopen. Kardiologe 2019;13:131-137. https://doi.org/10.1007/s12181-019-0317-2
- von Scheidt W, Bosch R, Klingenheben T, Schuchert A, Stellbrink C, Stockburger M (2019) DGK Pocketleitlinie Synkope www.dgk.org/Leitlinien
- von Scheidt W, Bosch R, Klingenheben T, Schuchert A, Stellbrink C, Stockburger M (2019) Manual zur Diagnostik und Therapie von Synkopen. Kardiologe 2019;13: 198-215. https://doi.org/10.1007/s12181-019-0319-0

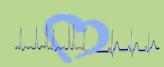
2018 ESC Guidelines for the diagnosis and management of syncope

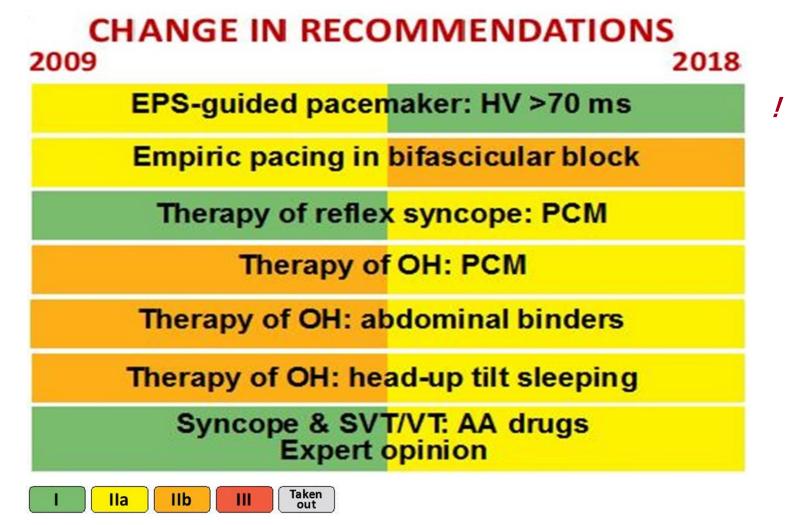
The Task Force for the diagnosis and management of syncope of the European Society of Cardiology (ESC)

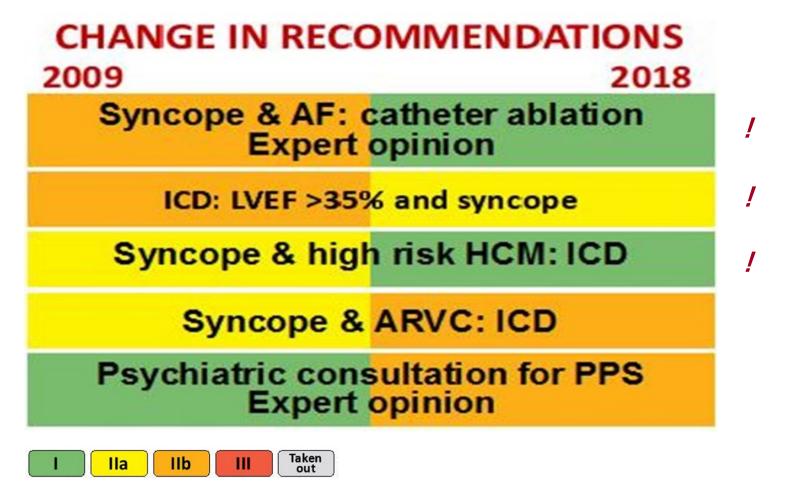
Developed with the special contribution of the European Heart Rhythm Association (EHRA)

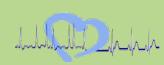
Endorsed by: European Academy of Neurology (EAN), European Federation of Autonomic Societies (EFAS), European Federation of Internal Medicine (EFIM), European Union Geriatric Medicine Society (EUGMS), European Society of Emergency Medicine (EuSEM)


https://leitlinien.dgk.org/?s=synkope









2018 NEW RECOMMENDATIONS (only major included)

Management of syncope in ED (section 4.1.2)

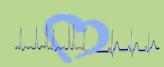
- Low-risk: discharge from ED
- · High-risk: early intensive evaluation in ED, SU versus admission
- · Neither high or low: observation in ED or in SU instead of being hospitalized

Video recording (section 4.2.5):

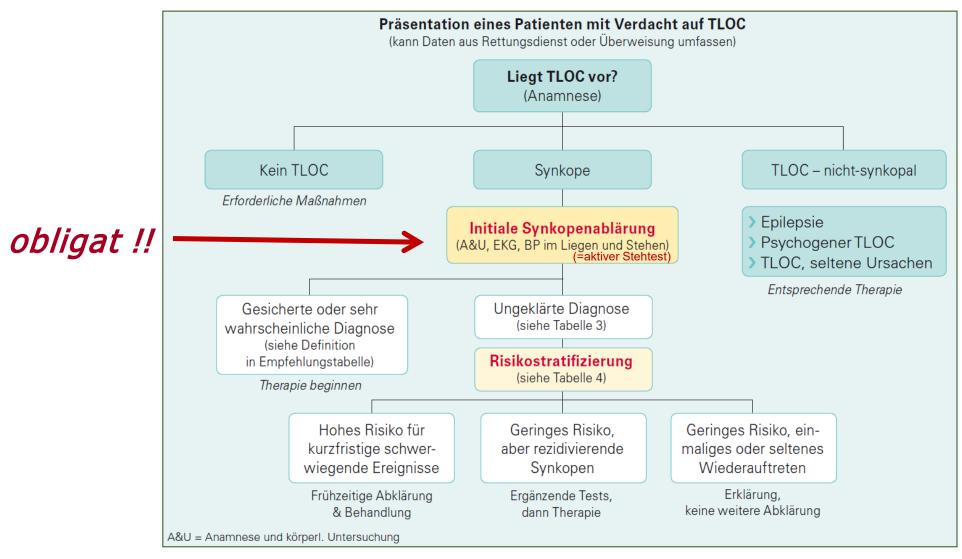
Video recordings of spontaneous events

ILR indications (section 4.2.4.7):

- In patients with suspected unproven epilepsy
- In patients with unexplained falls


ILR indications (section 5.6):

 In patients with primary cardiomyopathy or inheritable arrhythmogenic disorders who are at low risk of sudden cardiac death, as alternative to ICD



Diagnostik: "Initial evaluation" und Risikostratifikation

First, second, and third rule: "Talk to the patient ...!"

6 Grundfragen

- Handelt es sich um einen transienten, kompletten Bewusstseinsverlust mit vollständiger, spontaner Erholung?
- Wenn ja, liegt eine Synkope nach ESC-Definition vor?
- Gibt es Zeugen?
- Besteht eine potenziellätiologische zugrunde liegende Vor-Diagnose?
- Bestehen Hinweise für ein hohes Risiko für kardiovaskuläre Ereignisse oder Tod?
- Familiäre Häufung von Synkopen bzw. Hinweis für hereditäre kardiale Erkrankungen?

Anamnestische Eingrenzung

Zeitlicher Verlauf, Synkopen-"Tagebuch"

- Wann Erstmanifestation wann war das jüngst zurückliegende Ereignis?
- Wie viele Synkopen bislang Wie viele pro Monat / Jahr?
- Waren diese klinisch-symptomatisch vergleichbar?
- Dauer des Bewusstseinsverlustes?
- Im Fall gehäufter Synkopen: mehrere Ereignisse vom Ablauf her genau schildern lassen. (Hierbei fremdanamnestische Angaben obligat einbeziehen!)

<u>Begleitumstände</u>

- Körperposition bei Symptombeginn: stehend sitzend liegend?
- Zuvor Ruhe, Lagewechsel (Aufstehen?)
- Vorangehend: Schmerzreiz, Furcht, Husten, Miktion, Defäkation, Schlucken, Kopfdrehung?
- Hitze, Menschenmenge, langes Stehen?
- Symptome <u>während</u> oder <u>nach</u> einer Belastung?
- Peri- / postprandial?

First, second, and third rule: "Talk to the patient ...!"

Prodromi, Symptome vor/bei Synkope

- Herzrasen, Palpitationen?
- Sehstörungen ("Schwarzsehen"; unscharfes Sehen)?
- Abdominelle Sensationen, Übelkeit, Erbrechen?
- Kältegefühl, Schwitzen?
- Aura, Schmerzen (z.B. Schulter/Nacken)?

Symptome nach der Synkope

- Herzrasen, Palpitationen?
- Verwirrtheit?
- Übelkeit, Erbrechen?
- Blässe, kalter Schweiß?
- Kälte-, Hitzegefühl?
- Verletzung?
- Thoraxschmerz, "Muskelkater"?
- Urin-, Stuhlabgang?
- Zungenbiss (Zungenseite, Zungenspitze)?

<u>Fremdanamnese</u>

- Sturzart (zusammensacken vs "wie ein gefällter Baum")?
- Hautkolorit / Gesichtsfarbe (aschfahl, bläulich, rot, normal)
- Augen (offen, geschlossen?)
- Motorische Entäußerungen, Krampfäquivalente (Muster, Häufigkeit, Dauer, Einsetzen vor oder nach Bewusstseinsverlust?)
- Dauer des Bewusstseinsverlustes (unter 30-60 s vs. über 1 min)
- Dämmerzustand nach dem Bewusstseinsverlust?

Vorerkrankungen / Medikation

- Kardiovaskuläre Erkrankungen?
- Neurologische Erkrankungen?
- Stoffwechselerkrankungen (z.B. Diabetes mellitus)?
- Vasoaktive Medikamente?
- QTc-Zeit-verlängernde Substanzen?

Systematic clinical Syncope workupCharacterisic of patients evaluated for cardiac cause

	No. of Patients (No. With Cardiac				
Finding	Syncope)	Sensitivity (95% CI)	Specificity (95% CI)	LR+ (95% CI) ^a	LR- (95% CI) ^a
Patient Demographics					
Atrial fibrillation or flutter ¹⁷	323 (88)	0.13 (0.06-0.20)	0.98 (0.96-1.0)	7.3 (2.4-22)	0.89 (0.82-0.97)
Severe structural heart disease ^{18,19b}	222 (98)	0.35-0.51	0.84-0.93	3.3-4.8	0.58-0.70
History of heart failure 18,27b	1633 (299)	0.16-0.41	0.88-0.94	2.7-3.4	0.39-0.78
Age at first syncopal spell >35 y ¹⁷	323 (88)	0.91 (0.85-0.97)	0.72 (0.66-0.78)	3.3 (2.6-4.1)	0.13 (0.06-0.25)
Precipitating or Predisposing Factors					
During effort ^{18,21b}	421 (122)	0.12-0.14	0.92-0.99	1.4-15	0.88-0.96
While supine ^{18,21b}	421 (122)	0.06-0.14	0.94-0.97	1.1-4.9	0.89-1.0
Prolonged sitting/standing ¹⁷	323 (88)	0.38 (0.28-0.48)	0.31 (0.25-0.37)	0.54 (0.41-0.72)	2.0 (1.6-2.6)
On way to the toilet ¹⁷	323 (88)	0.05 (0-0.09)	0.84 (0.79-0.89)	0.28 (0.10-0.76)	1.1 (1.1-1.2)
Stress ¹⁷	323 (88)	0.08 (0.02-0.14)	0.68 (0.62-0.74)	0.25 (0.12-0.51)	1.4 (1.2-1.5)
Warm place ¹⁷	323 (88)	0.09 (0.03-0.15)	0.45 (0.39-0.51)	0.17 (0.08-0.33)	2.0 (1.7-2.4)
Pain or medical procedure ¹⁷	323 (88)	0.06 (0.01-0.11)	0.52 (0.46-0.58)	0.12 (0.05-0.28)	1.8 (1.5-2.1)
After using the toilet ¹⁷	323 (88)	0 (0-0.03)	0.89 (0.85-0.93)	0.05 (0.003-0.85)	1.1 (1.1-1.2)

Systematic clinical Syncope workup Characterisis of nationts evaluated for carding on

Characterisic of patients evaluated for cardiac cause

Finding	No. of Patients (No. With Cardiac Syncope)	Sensitivity (95% CI)	Specificity (95% CI)	LR+ (95% CI) ^a	LR- (95% CI) ^a
Symptoms Prior to the Episode					
Dyspnea ^{18,19,21,23}	699 (176)	0.18 (0.08-0.36)	0.95 (0.80-0.99)	3.5 (1.5-9.1)	0.87 (0.74-0.94)
Chest pain/angina ^{23,27b}	1680 (255)	0.06-0.19	0.95-0.98	3.4-3.8	0.71-0.79
Palpitations ^{17,18,21-23,27}	2836 (581)	0.13 (0.09-0.19)	0.93 (0.82-0.98)	1.9 (0.86-4.5)	0.94 (0.89-1.0)
Absence of prodromes ^{18,20-22}	1031 (353)	0.43 (0.35-0.51)	0.73 (0.55-0.86)	1.6 (1.0-2.6)	0.79 (0.69-0.96)
Pallor ^{17,23,27}	2003(343)	0.22 (0.08-0.48)	0.69 (0.34-0.90)	0.69 (0.58-0.82)	1.2 (1.0-1.4)
Blurred vision ^{17,20-23}	1401 (397)	0.16 (0.09-0.28)	0.71 (0.56-0.83)	0.55 (0.27-1.1)	1.2 (0.96-1.5)
Diaphoresis ^{21-23,27}	2352 (415)	0.15 (0.10-0.23)	0.69 (0.66-0.71)	0.49 (0.33-0.71)	1.2 (1.1-1.3)
Nausea ^{17,18,21-23,27}	2836 (581)	0.11 (0.07-0.18)	0.74 (0.65-0.81)	0.44 (0.31-0.62)	1.1 (1.1-1.3)
Awareness of being about to faint ^{22,23b}	620 (150)	0.12-0.38	0.64-0.66	0.35-1.0	0.97-1.3
Sweating or warm feeling ¹⁷	323 (88)	0.24 (0.15-0.33)	0.38 (0.32-0.44)	0.38 (0.26-0.57)	2.0 (1.6-2.5)
Auditory distortion ¹⁷	323 (88)	0.14 (0.07-0.21)	0.64 (0.58-0.7)	0.38 (0.22-0.66)	1.3 (1.2-1.5)
Lightheadedness ²²	412 (116)	0.08 (0.03-0.13)	0.8 (0.75-0.85)	0.38 (0.20-0.75)	1.2 (1.1-1.2)
Numbness or tingling ¹⁷	323 (88)	0.09 (0.03-0.15)	0.72 (0.66-0.78)	0.33 (0.16-0.66)	1.3 (1.1-1.4)
Abdominal discomfort ^{17,23b}	531 (122)	0.029 -0.034	0.84-0.93	0.21-0.39	1.0-1.2
Headache ¹⁷	323 (88)	0.03 (0-0.07)	0.8 (0.75-0.85)	0.17 (0.06-0.55)	1.2 (1.1-1.3)
Feeling cold ²²	412 (116)	0.02 (0-0.05)	0.89 (0.85-0.93)	0.16 (0.04-0.64)	1.1 (1.0-1.2)
Mood changes or prodromal preoccupation with details ¹⁷	323 (88)	0.02 (0-0.05)	0.76 (0.71-0.81)	0.09 (0.02-0.38)	1.3 (1.2-1.4)
During and After the Episode					
Cyanotic during syncope ¹⁷	323 (88)	0.08 (0.02-0.14)	0.99 (0.98-1.0)	6.2 (1.6-24)	0.93 (0.88-0.99)
Injury ^{19,27b}	1533 (241)	0.16-0.25	0.80-0.86	1.13-1.28	0.90-0.98
Numbness or tingling ¹⁷	323 (88)	0.06 (0.01-0.11)	0.82 (0.77-0.87)	0.31 (0.13-0.76)	1.2 (1.1-1.2)
Nausea ^{17,22b}	735 (204)	0.06-0.10	0.65-0.84	0.29-0.38	1.1-1.4
Cannot remember behavior during syncope ¹⁷	323 (88)	0.05 (0-0.09)	0.82 (0.77-0.87)	0.25 (0.09-0.69)	1.2 (1.1-1.2)
Mood changes ¹⁷	323 (88)	0.03 (0-0.07)	0.83 (0.78-0.88)	0.21 (0.06-0.65)	1.2 (1.1-1.2)

Säulen der Synkopen-Anamnese

Optimal: institutionalisierter Flowchart

Before TLOC

- Position: supine, sitting, erect.
- Activity: at rest, postural changes, during/after exercise, immediately after micturition, defecating, coughing, swallowing, eating, laughing.
- Predisposing factors: warm and/ or crowded environment, prolonged orthostatism.
- Precipitating factors: emotional stress, fear, severe pain, neck movements.
- Prodromal symptoms: nausea, vomiting, emotional discomfort, feeling hot/cold, sweating, shoulder pain, dizziness, blurred vision, focal neurological signs.

A

Pay attention to symptoms underlying potentially serious medical conditions (e.g. dyspnea, precordial pain).

During TLOC

Discuss with an eyewitness

- Dynamics of the fall
- Loss of responsiveness
- Duration of the TLOC
- Skin colour: pallor, cyanosis, blushing.
- Abnormal motor control
- Movements: tonic-clonic, myoclonus, automatisms.
- Tongue biting

After TLOC

- Nausea and/or vomiting
- Sweating
- Feeling cold
- Palpitations
- Precordial pain
- Mental confusion
- Skin color
- Trauma
- Urinary/fecal incontinence
- · Focal neurological signs

Medical history

Background

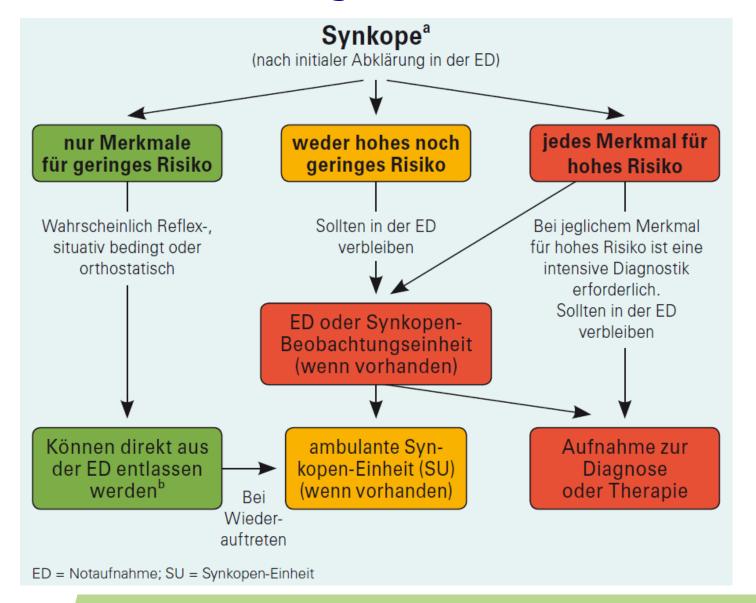
- Pre-exhisting cardiac, metabolic, or neurological conditions (e.g. chronic heart failure, diabetes, Parkinson's disease, epilepsy, narcolepsy).
- Family history of sudden cardiac death.

Drugs

• Diuretics, vasodilators, antiarrhytmics, antidepressants, QT prolonging drugs.

Recurrent TLOC

- Interval between the previous and the current episode.
- TLOC frequency.


Wer muss denn nun stationär gehen ... ?

bevorzugt initiales Management auf ED- Beobachtungsstation und/oder rasche Überweisung an Synkopen-Einheit	bevorzugt stationäre Aufnahme
 Hochrisiko-Merkmale UND: > stabile, bekannte strukturelle Herzerkrankung > schwere chronische Erkrankung > Synkope bei Belastung > Synkope im Liegen oder Sitzen > Synkope ohne Prodromi > Palpitationen während Synkope > inadäquate Sinusbradykardie oder sinuatrialer Block > Verdacht auf Devicefehlfunktion oder inadäquate Auslösung > QRS-Komplex mit Präexzitation > SVT oder paroxysmales Vorhofflimmern > EKG hinweisend auf eine erbliche arrhythmogene Erkrankung > EKG hinweisend auf ARVC 	 Hochrisiko-Merkmale UND: jede potenziell schwere Begleiterkrankung, die eine stationäre Aufnahme erfordert durch Synkope verursachte Verletzung Notwendigkeit weiterer dringender Abklärung und Therapie, wenn dies anders (also auf der Beobachtungs- station) nicht möglich ist, z. B. EKG- Monitoring, Echokardiographie, Belastungstest, elektrophysiologi- sche Untersuchung, Angiographie, Gerätefehlfunktion, usw. Synkope erfordert Therapie

Risikostratifizierung nach "initial evaluation"

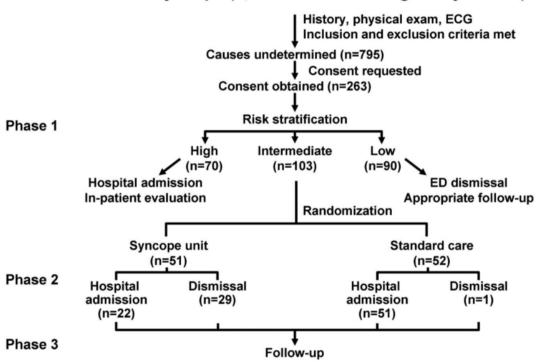
Die "Syncope Unit" soll's richten

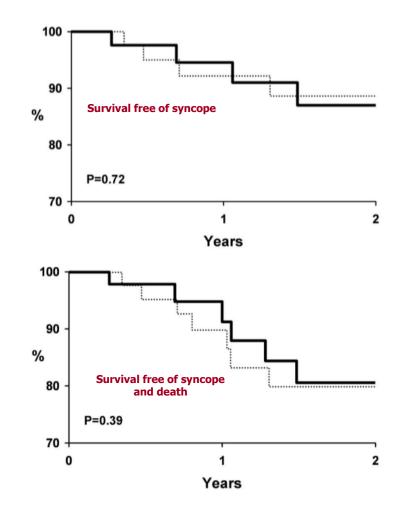
EHRA POSITION PAPER

Syncope Unit: rationale and requirement – the European Heart Rhythm Association position statement endorsed by the Heart Rhythm Society

Rose Anne Kenny* (Chairperson, Ireland), Michele Brignole (Co-chairperson, Italy), Gheorghe-Andrei Dan (Romania), Jean Claude Deharo (France), J. Gert van Dijk (The Netherlands), Colin Doherty (Ireland), Mohamed Hamdan (USA), Angel Moya (Spain), Steve W. Parry (UK), Richard Sutton (UK), Andrea Ungar (Italy), and Wouter Wieling (The Netherlands)

Scope of the document The 2009 ESC guidelines recommend the establishment of formal Syncope Units (SUs)—either virtual or physical site within a hospital or clinic facility—with access to syncope specialists and specialized equipment.³ In response, this position statement by the European Heart Rhythm Association (EHRA) endorsed by the Heart Rhythm Society (HRS) offers a pragmatic approach to the rationale and requirement for an SU, based on specialist consensus, existing practice and scientific evidence





SEED-Study:

Diagnostic yield and hospital admission @ ED-based S.U.

ED Evaluation for Syncope (3,502 Patients During Study Period)

Diagnostic improvement and cost lowering of a pediatric syncope unit

Characteristics of the study population					
	2012-2013 (n = 578)	2014-2015 (n = 831)	2016-2017 (n = 869)	<i>P</i> value	
Patient characteristics					
Female (%)	300 (51.9)	478 (57.5)	455 (52.4)	.047	
Age, y (mean \pm SD)	14.8 ± 6.7	13.5 ± 5.8	11.5 ± 4.7	<.0001	
Admission and hospitalization					
Time from ED to cardiac evaluation (h)*	10 (0-60)	6 (0-40)	4 (0-21)	<.0001	
ED stay (d)*	2 (0.5-10)	2 (0.5-6)	2 (0.5-6)	.241	
Hospitalization rate (%)	110 (19)	25 (3)	16 (1.9)	<.006	
Hospitalization days	10.3 ± 3.2	3.9 ± 1.1	3.9 ± 1.4	<.0001	
Discharge (%)	49.1	66.3	84.5	<.0001	
Tests performed					
Day hospital (%)	48.2	31.3	13.3	<.0001	
Censored (%)	2.3	1.3	0.3	<.0001	
Neurologic consultation (%)	0.4	0.6	1,1	<.0001	
No. of diagnostic tests †	3 (0-5)	2 (0-5)	2 (0-5)	<.0001	
Tilt test (%)	27.7	12.5	6.3	<.0001	
Stress test (%)	25.1	22.4	10.7	<.0001	
Electrocardiogram Holter monitoring (%)	42	43	24.1	<.0001	
Cardiac imaging (Echo/CMR/CT) (%)	36.2	21.3	8.7	<.0001	
EPS/TAP (%)	4.8	1.7	1.2	<.0001	

CMR, cardiac magnetic resonance imaging; CT, computed tomography; Echo, echocardiography; EPS, electrophysiological study; TAP, transesophageal atrial pacing. *Median (IQR).

[†]Median (minimum and maximum values).

Increase of diagnostic yield

in a pediatric syncope unit

Results of cardiac diagnostic tests before and after pediatric syncope unit was implemented					
Diagnostic features	Before pediatric syncope unit 2012-2013 (%)	After pediatric syncope unit 2014-2017 (%)	<i>P</i> value		
Positive tilt test	43	57	<.001		
Electrocardiogram Holter monitoring abnormalities	41	59	.041		
Exercise stress test: ventricular or supraventricular arrhythmias	4	14	.001		
EP Test: ventricular arrhythmias	13	41	.024		
Cardiac imaging (echo/MRI/CT): cardiac diseases	2	5	.045		
24-Hour blood pressure monitoring: hypotension	45	49	.288		

EP, electrophysiology.

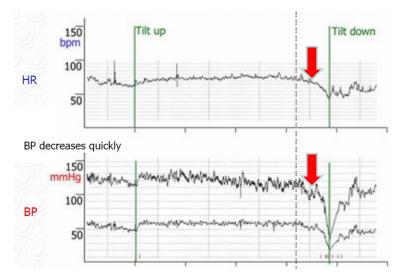
Spezifische Diagnostik:

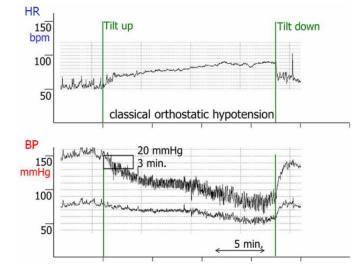
Kipptisch-Untersuchung (KTU)

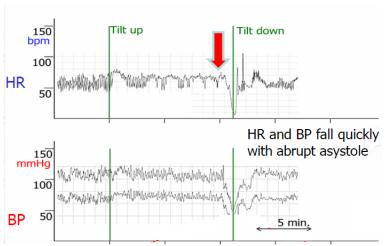
92%	Typische VVS, emotionaler Trigger (Clom)
78%	Typische VVS, situativer Trigger (TNG)
73%-65%	Typische VVS, übrige (Clom) (TNG)
56%-51%	Wahrscheinlich Reflex-, atypisch (TNG)
47 % 45 %	kardiale Synkope (TNG) wahrscheinlich tachyarrhyth- mische Synkope (passiv)
36%-30%	unklare Synkope (TNG) (Clom)
13%-8%	Personen ohne Synkope (passiv) (Clom) (TNG)
	Clom = Clomipramin; TNG = Trinitroglycerin.

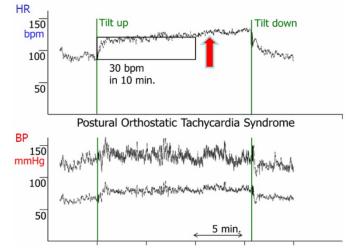
Indikationen		
Eine Kipptisch-Untersuchung ist bei Patienten mit Verdacht auf Reflexsynkope, OH, POTS oder PPS zu erwägen.	lla	В
Eine Kipptisch-Untersuchung kann erwogen werden, um Patienten anzulernen, Symptome zu erkennen und mechanische Manöver auszuführen.	llb	В
Diagnostische Kriterien		
Reflexsynkope, OH, POTS oder PPS sind als wahrscheinlich anzusehen, wenn die Kipptisch-Untersuchung die Symptome mit den charakteristischen Kreislaufreaktionen dieser Erkrankungen reproduziert.	lla	В

Anteil positiver Befunde der Kipptisch-Untersuchung bei verschiedenen Krankheitsbildern. Die für Patienten mit echter VVS oder ohne Synkope in der Vorgeschichte berechnete Sensitivität und Spezifität der Kipptisch-Untersuchung ist durchaus akzeptabel.


Man kann die Untersuchung jedoch nicht auf Populationen mit unklaren Synkopen anwenden und hoffen, dass die Kipptisch-Untersuchung entscheidende Erkenntnisse bringt. Anders ausgedrückt, die Kipptisch-Untersuchung ist bei jenen Patienten, die es am dringendsten nötig haben, von geringem diagnostischem Wert. Bei diesen Patienten offenbart ein positiver Kipptisch-Befund eine Hypotonieneigung.

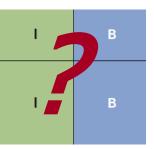





Aktuelles zur Spezifische Diagnostik:

Kipptisch-Untersuchung (KTU): outcome

Spezifische Diagnostik:

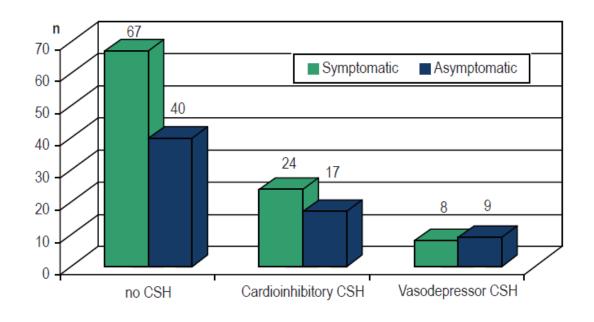

Carotis-Sinus-Druck (CSM)

Indikationen

CSM ist bei Patienten > 40 Jahren mit Synkope unbekannter Ursache vereinbar mit einem Reflexmechanismus angezeigt.

Diagnostische Kriterien

CSS ist diagnostiziert wenn die CSM eine Bradykardie (Asystolie) und/oder Hypotonie hervorruft, die spontane Symptome reproduzieren, und die klinischen Merkmale des Patienten vereinbar mit einem Reflexmechanismus für die Synkope sind.

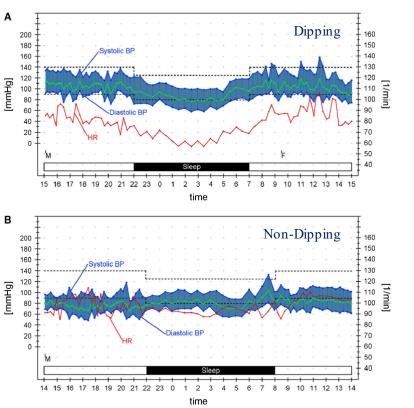

Die CSM ist, vergleichbar der Neubewertung der Kipptisch-Untersuchung, eine ungeeignete, da unspezifische Diagnostik bei ungeklärten Synkopen ohne anamnestische Hinweise auf einen spezifischen Reflexmechanismus (Reizung des Carotissinus) als Ursache. Sie sollte somit besser als Bestätigungstest einer begründeten klinischen Verdachtsdiagnose angesehen werden, nicht als Suchtest bei ungeklärter Synkope. Eine generelle Empfehlung zur Durchführung einer CSM bei Synkopenpatienten > 40 Jahre erscheint daher wenig sinnvoll und ist in Deutschland wenig gebräuchlich. Liegt eine für ein Carotissinus-Syndrom typische oder zumindest suggestive Auslösesituation der Synkope anamnestisch nicht vor, kann u.E. auf die (in korrekter Durchführung aufwändige und gemäß Leitlinienempfehlung häufig notwendige) Durchführung einer CSM verzichtet werden wegen fehlender Spezifität eines pathologischen Resultates. Die empfohlene Häufigkeit sowie der Aufwand der Durchführung und die geringe therapeutische Ausbeute stehen u.E. in keiner vernünftigen Relation. Die angemessene Balance zwischen häufiger Durchführung der CSM mit dem Risiko einer Übertherapie bei pathologischem Testergebnis (fehlindizierte Schrittmacherimplantationen) und weitestgehendem Verzicht auf die CSM als diagnostische Methode mit dem Risiko einer Untertherapie (nicht erfolgte Schrittmacherimplantation trotz gegebener Indikation) ist bislang nicht gefunden.

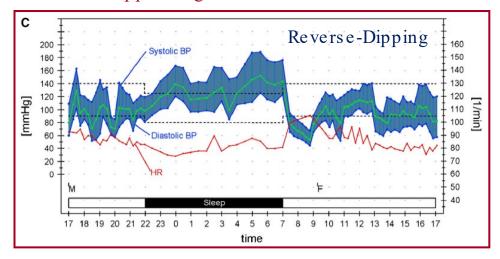
Carotid sinus massage

A matter of debate!

No differences in the response to CSM were demonstrated between patients with and without syncope or presyncope. Carotid sinus hypersensitivity may be an unspecific condition in the evaluation of syncope.

Differently from the results observed in the search of OH, similar responses were obtained during CSM in symptomatic and asymptomatic groups. This finding perhaps reinforces the hypotheses that CSH is not a diagnostic marker of a clinical syndrome.


Thus, a positive test for CSH may not necessarily determine the cause of fainting, leaving the clinician with the difficult decision whether to accept the test as a confirmation of the cause of syncope, which sometimes might induce an incorrect diagnosis.

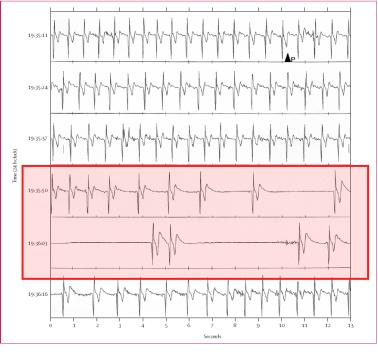

Spezifische Diagnostik: autonome Basis-Tests

24-h-Blutdruckmessung (ABPM)

ABPM		
ABPM is recommended to detect nocturnal hypertension in patients with autonomic failure. 140,148–151	1	В
ABPM should be considered to detect and monitor the degree of OH and supine hypertension in daily life in patients with autonomic failure. 152,153	lla	С
ABPM and HBPM may be considered to detect whether BP is abnormally low during episodes suggestive of orthostatic intolerance.	IIb	С

Detecting nocturnal hypertension in Parkinson's disease and multiple system atrophy: proposal of a decision-support algorithm

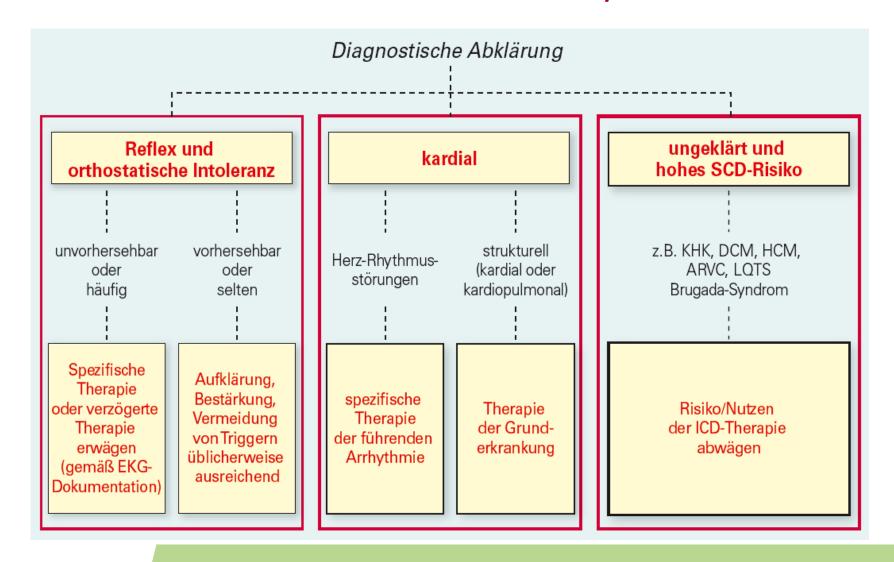
Elektrokardiographische Diagnostik

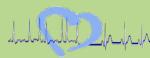

Entwicklung amublanter EKG-Monitoring-Technologien

- Holter monitoring (= 24-h-LZ-EKG)
- Multi-day ECG (4-/ 7 Tage)
- Transtelephonische EKG Rekorder
- Non-looping Eventrekorder (durch d.Pat aktiviert)
- External loop recordings (ELR) (automat./Pat.aktiv.)
- Internal loop recordings (ILR) (automat./ Pat.-aktiv.)
- Remote ECG monitoring (via SM/ICD/CRT)
- Mobile Cardiac Outpatient Telemetry (MCOT)

Elektrokardiographische Diagnostik: ILR (Loop recorder)

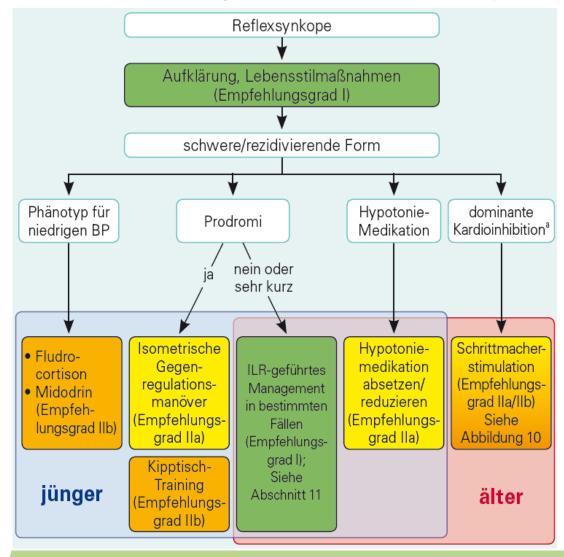
Die aktuelle ESC-Leitlinie stärkt die Bedeutung des ILR zur effektiven und zeitnahen Ursachenklärung von Synkopen nochmals gegenüber der Vorgängerversion. In Deutschland besteht bezüglich der Implantation von ILRs eine von ärztlicher und Patientenseite nicht akzeptable Situation aufgrund fehlender ambulanter und häufig abgelehnter stationärer Vergütung. Ebenso wird die ambulante Nachsorge nicht vergütet. Es besteht daher eine Unterversorgung von Patienten mit ungeklärten Synkopen, da eine leitliniengerechte Stellung von Diagnosen und Initiierung von Therapien nicht möglich ist wegen fehlender ILR-Verwendung. Hier besteht dringender administrativer Handlungsbedarf.


ILR (Implantierbarer Loop-Rekorder): ILR ist in einer frühen Phase zur Abklärung bei Patienten mit rezidivierenden Synkopen unklarer Genese indiziert, wenn keine Hochrisikokriterien (aufgelistet in Tabelle 4) vorliegen und wenn die Wahrscheinlichkeit eines Rezidivs während der Batterielebensdauer hoch ist.	I	Α
<i>ILR</i> ist indiziert bei Patienten mit Hochrisikokriterien (aufgelistet in Tabelle 5), bei denen eine ausführliche Abklärung keine Ursache oder Therapie erbracht hat und bei denen konventionelle Indikationen für einen ICD zur Primärprävention oder für einen Schrittmacher fehlen.	I	Α
ILR sollte bei Patienten mit vermuteter oder sicherer Reflexsynkope mit häufigen oder schweren synkopalen Episoden erwogen werden.	lla	В
<i>ILR</i> kann bei Patienten erwogen werden, bei denen der Verdacht auf Epilepsie bestand, die Therapie aber nicht wirksam war.	llb	В
ILR kann bei Patienten mit ungeklärten Stürzen erwogen werden.	llb	В



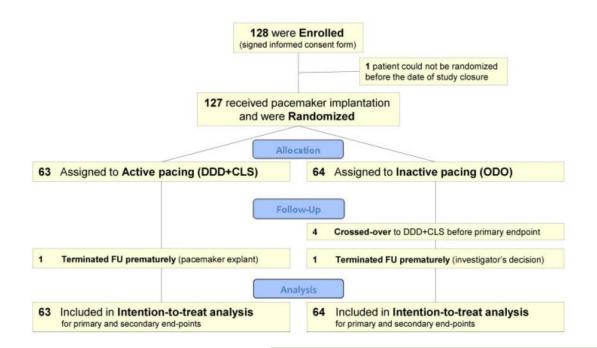
Aktuelles zum therapeutischen Vorgehen nach Synkope

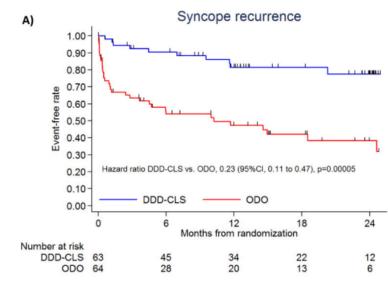
Risikostratifikation =>=> Identifikation spezif. Mechanismen

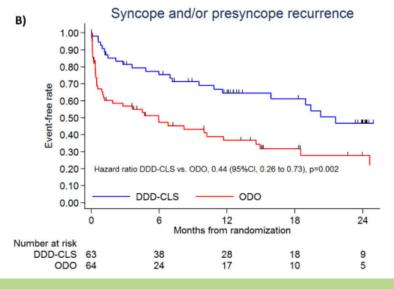


Therapeutisches Vorgehen nach Synkope

First-line Management bei Reflex-Synkopen




Cardiac pacing in severe recurrent reflex syncope and tilt-induced asystole


BIO Sync CLS - Studie

Selektiertes Kollektiv

- *Pat > 40 J alt*
- mind. 2 dokumentierte Reflex-Synkopen
- Reflex-Synkope bei KT mit mind. 3 Sek Asystolie

Therapeutisches Vorgehen nach Synkope

ICD-Therapie nach Synkope

ICD-Therapie wird empfohlen zur Reduktion des SCD bei Patienten mit symptomatischer Herzinsuffizienz (NYHA-Klasse II-III) und LVEF ≤ 35% nach ≥ 3-monatiger optimaler medikamentöser Therapie, mit einer Lebenserwartung von mindestens 1 Jahr in gutem funktionellen Status.	I	А
ICD sollte erwogen werden bei Patienten mit ungeklärten Synkopen mit systolischer Beeinträchtigung, aber ohne aktuelle Indikation für einen ICD, um das Risiko für plötzlichen Tod zu verringern.	lla	С
Anstelle des ICD kann bei Patienten mit rezidivierenden, ungeklärten Synkopen mit systolischer Dysfunktion, aber ohne aktuelle Indikation für einen ICD, ein ILR erwogen werden.	llb	С

ABER:

Eine ICD-Indikation (Ila C) bei Synkope und eingeschränkter linksventrikulärer EF, allerdings oberhalb 35 % (d.h. ohne unstrittige ICD-Indikation), ist eine weitreichende Expertenkonsens-Empfehlung, die von der ESC-Leitlinie "Ventricular Arrhythmias and Prevention of Sudden Cardiac Death" abweicht. Hier empfiehlt sich eine sorgfältige Abwägung gegenüber einer ILR-Implantation zur weiteren Informationsgewinnung.

Therapie: "The beef is in the ANS"!

Direkte Beeinflussung des Autonomen Nervensystems Durch die Cardioneuroablation

Cardioneuroablation for the treatment of reflex syncope and functional bradyarrhythmias: A Scientific Statement of the European Heart Rhythm Association

Anatomische Verteilung autonomer Ganglien

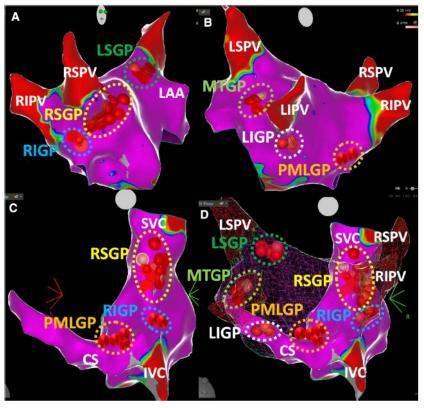
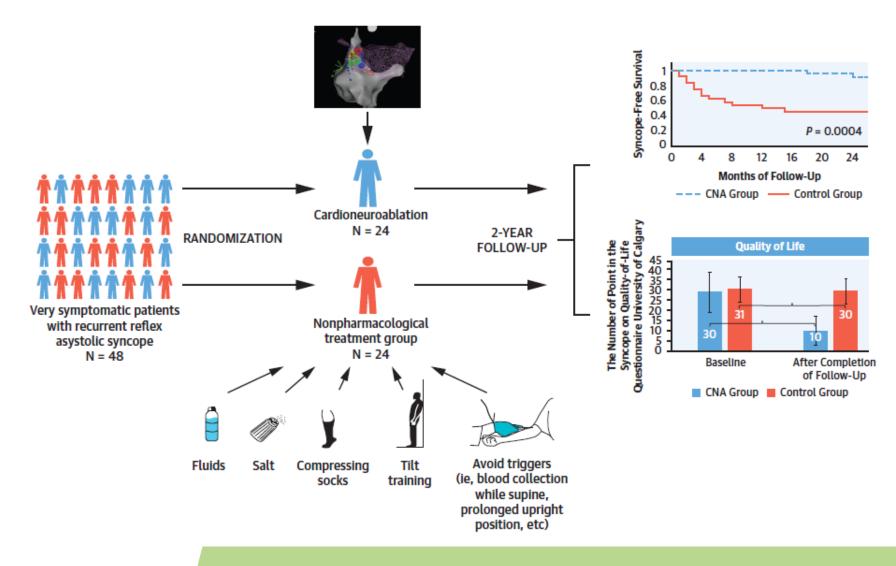



Figure 2 Anatomical distribution of ganglionated plexi according to the nomenclature by Armour et al. (Ref. 34). (A) The left atrium (LA) is seen in the right anterior oblique projection. (B) The LA is seen in the modified posteroanterior view. (C) The right atrium (RA) is seen in the posteroanterior view. (D) Both atria are seen in the posteroanterior view. Red and pink spheres show ablation points in the relevant ganglionated plexus areas. In the LA, RSGP-RIGP can be exposed from the right anterior oblique projection, LSGP can be exposed from the anteroposterior view with cranial tilt, and LIGP-PMLGP can be exposed from the posteroanterior projection, respectively. In the RA, RSGP, RIGP, and PMLGP can be exposed from the posteroanterior projection. Please see the text for other details. CS, coronary sinus; IVC, inferior vena cava; LAA, left atrial appendage; LIGP, inferior (posterolateral) left atrial GP LIPV, left inferior pulmonary vein; LSGP, superior left atrial GP; RIPV, right inferior pulmonary vein; MTGP, the Marshall tract GP; PMLGP, posteromedial left atrial GP; RIGP, the inferior (posterior) right atrial GP; RIPV, right inferior pulmonary vein; RSGP, superior (anterior) right atrial GP; RSPV, right superior pulmonary vein; SVC, superior vena cava.

Erste randomisierte Studie in 2023

Algorithmus zur Patientenselektion

Adult patients (prefered <60 years) with presumable reflex syncope

(typical syncope triggers or syncope scenario, no clue of intrinsic SAN or AVN ECG abnormalities, no structural heart disease, failure of non-interventional conventional therapies in preventing syncope recurrence) severe, unpredicted, recurrent, or traumatic episodes requiring intervention

Potential candidate to assess for CNA

Cardiovascular autonomic function tests

Head-up tilt testing

Carotid sinus massage (>40 years)

Standing test

24-hour ambulatory blood pressure monitoring

>3 sec asystolic reflex syncope during tilt testing: Data are in favour of CNA efficacy

In case of associated hypotensive susceptibility: Data on CNA results are debetable

Implantable loop recorder

Paroxysmal asystole >3 sec during syncope or asymptomatic pause >6 sec

Data are in favour of CNA

Bradycardia <40 bpm for >10 sec during syncope

Limited data on CNA efficacy

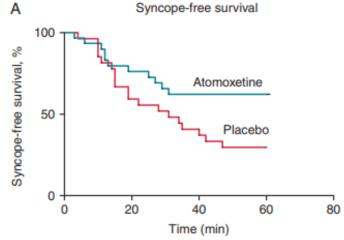
Normal sinus rhythm, sinus tachycardia, and tachyarrhythmias during syncope

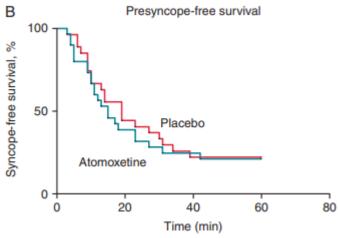
No data on CNA efficacy

Neues zur medikamentösen Therapie vasovagaler Synkopen

Atomoxetin (Norepinheprin Transport Inhibitor)
POST-6 (proof-of-concept study)

Table I Baseline characteristics of study populations

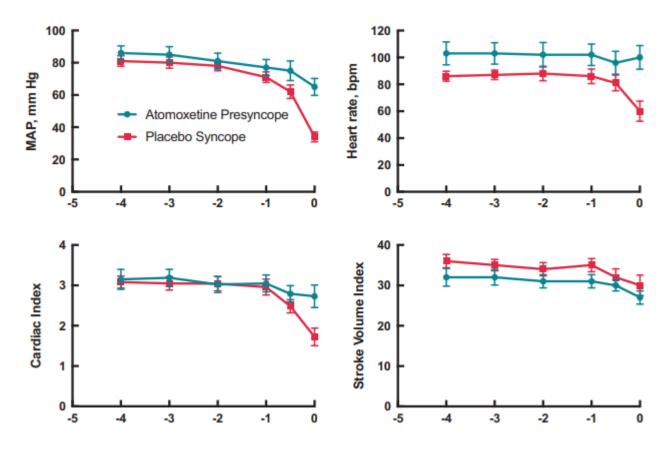

	Placebo (n = 27)	Atomoxetine (n = 29)
Age (years), mean ± SD	38 ± 14	35 ± 14
Female, n (%)	18 (67)	22 (76)
BMI (kg/m ²), mean ± SD	26 ± 6	26±5
Syncope history		
Age of onset (years), mean ± SD	19 ± 14	21 ± 14
Lifetime spells, median (IQR)	11 (4 –20)	12 (5-36)
Spells in previous year, median (IQR)	3 (1-6)	3 (2-6.75)
Duration of symptoms (years), mean ± SD	18 ± 15	18±14
Calgary syncope score, median (range)	3 (-2 to 6	6) 3 (-2 to 6)
Systolic blood pressure (mmHg), mean \pm SD	115 ± 13	118±12
Diastolic blood pressure (mmHg), mean \pm SD	73 ± 12	76±9
$\label{eq:mean_mean} \begin{array}{l} \text{Mean arterial pressure (mmHg), mean} \\ \pm \text{SD} \end{array}$	87 ± 11	90±9
Heart rate (b.p.m.), mean ± SD	71 ± 12	74 ± 11


There were no significant inter-group differences.

BMI, body mass index; IQR, interquartile range; SD, standard deviation.

Table 2 Symptomatic outcomes grouped by treatment allocation

Placebo, n (%)	Atomoxetine, n (%)	Total
6 (22)	6 (21)	12
2 (7)	13 (45)	15
19 (70)	10 (34)	29
27 (100)	29 (100)	56
	6 (22) 2 (7) 19 (70)	n (%) n (%) 6 (22) 6 (21) 2 (7) 13 (45) 19 (70) 10 (34)



Neues zur medikamentösen Therapie vasovagaler Synkopen

Atomoxetin (Norepinheprin Transport Inhibitor)
POST-6 (proof-of-concept study)

Was hat sich durch die 2018 ESC Leitlinien verändert – Welche Neuigkeiten sind seither dazugekommen?

Kipptisch-Test (Pathophysiologie VVS)

EPU (Arrhythmogene /kardiale Synkope))

Pharmakotherapie

Schrittmacher-Therapie

Ablations-Therapie

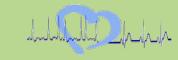
KI beim Synkopen-Management

Kipptisch-Test: Vasodeptression geht der Kardioinhibition um 8 Min voran Kardioinhibition fast immer vorhanden; nimmt mit zunehmendem Alter ab! (Pathophysiologie VVS)

Bifaszikulärer Block ist keine Indikation mehr.

Atomoxetin als möglicher Supressor e. Cardioinhibition

Closed-loop Stimulation (CLS) zu bevorzugen!



Cardioneurale Ablation: große Studien noch ausstehend!

Erste Konzepte in Evaluation (z.B. EKG-Diagnostik...)

Gut-strukturierte Synkopen-Diagnostik: Take home

- Einführung eines systematisches Vorgehen bei Synkopen-Patienten .
- Ausbildung einer/s spezialisierten 'syncope nurse'.
- Obligate Anwendung der 'Initialen Evaluation' zur Separation von niedrig-, intermediär-, und hoch-Risiko-Patienten (Risikostratifikation) gem. ESC-Guidline
- Rate an unnötigen Hospitalisierungen niedrig halten!
- UND: 'common clinical sense' in jedem Stadium der Synkopen-Abklärung

"The secret to being a syncope expert is taking a better history than the referring doctor..."

Paraphrase from Dr. Andrew Krahn

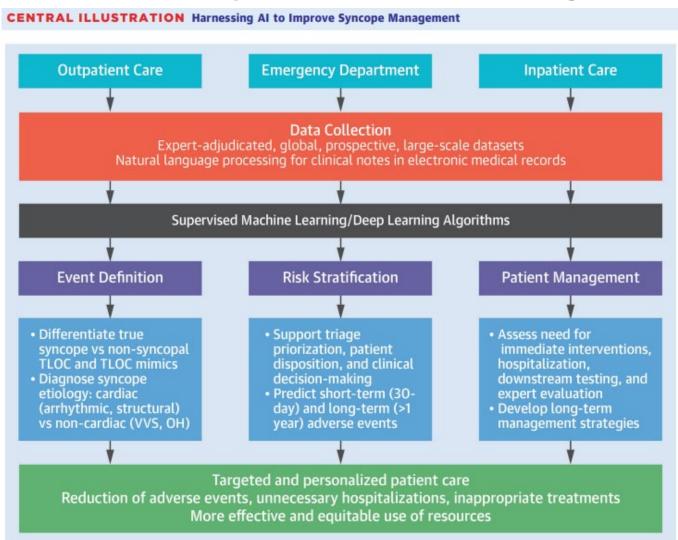
Klinisch-diagnostische Scores

=> Keine Bedeutung mehr!

The Evaluation of Guidelines in Syncope Study (EGSYS) Scores

Clinical Variable	Points
Palpitations	4
Abnormal ECG/heart disease ^{c,d}	3
Effort syncope	3
Syncope in supine position	2
Neurovegetative prodromes ^e	-1
Precipitating and predisposive factors ^f	-1

= interessant als diagnostischer Anhaltspunkt nach LL jedoch nicht zur Diagnosestellung nutzen !


The Calgary Syncope Symptom Score

Question	Points (if yes)
Is there a history of at least one of bifascicular block, asystole, supraventricular tachycardia, diabetes?	-5
At times have bystanders noted you to be blue during your faint?	-4
Did your syncope start when you were 35 years of age or older?	-3
Do you remember anything about being unconscious?	-2
Do you have lightheaded spells or faint with prolonged sitting or standing?	1
Do you sweat or feel warm before a faint?	2
Do you have lightheaded spells or faint with pain or in medical settings?	3
The patient has vasovagal syncope if the point score is \geq -	-2.

Future directions in the management of syncope:

A little help from new technologies ?

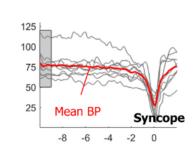
Wie könnte KI Synkopen-Management verbessern?

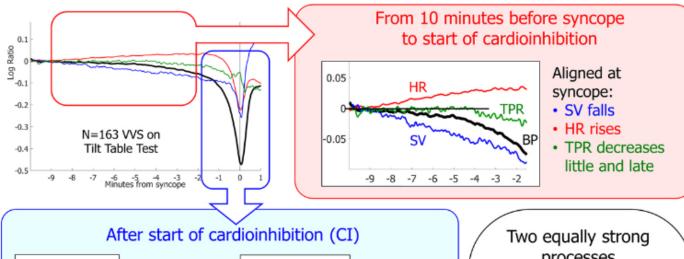
Fragestellungen

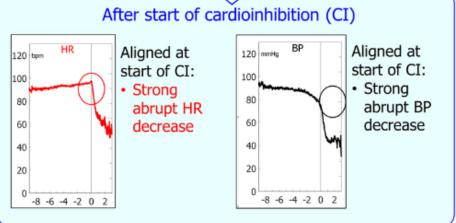
Purpose	Clinical Question
Define the event	Is it syncope or another cause of TLOC?
Diagnose the underlying etiology	What is the cause of syncope?
Risk stratification	Is the patient at risk of short- and long-term adverse outcomes?
Predict recurrent events	How likely is the patient to have syncope again?
Extract clinical info from ECG findings	Does the ECG indicate a cause for syncope?
Determine appropriate ED disposition	Hospitalization or discharge?
Assess the need for immediate interventions	Acute treatment or chronic assessment?
Evaluate the need for diagnostic tools	Is TTE, cardiac catheterization, or telemetry needed?
Determine long-term management strategies	What is the optimal treatment and follow- up?

The key objectives and clinical questions that potentially could be addressed with AI. Examples of short- and long-term adverse outcomes are described in **Table 4**.

AI = artificial intelligence; ECG = electrocardiogram; ED = emergency department; TLOC = transient loss of consciousness; TTE = transthoracic echocardiography.


Was hat sich durch die 2018 ESC Leitlinien verändert?


Analyse der KTU von 163 konsekutiven Ptn mit typischer VVS


Pathophysiology of hypotension in vasovagal syncope

Blood Pressure (BP) = Heart rate (HR) · Stroke volume (SV) · Total peripheral resistance (TPR)

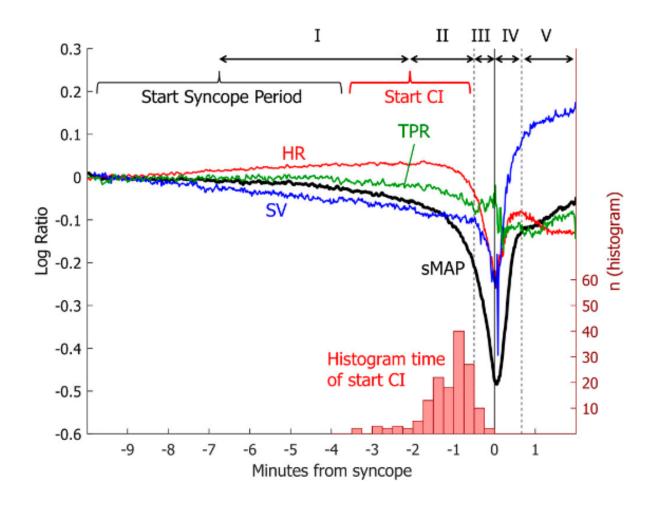
- N=163 syncope during tilt table test
- · Time series of BP, SV, HR and TPR
- · Express time series as ratios of early baseline period
- Take logarithms of ratios ('LR'): BP_{LR} = HR_{LR} + SV_{LR} +TPR_{LR}
- Allows physiologically correct comparison of parameters, periods, groups

processes

Early

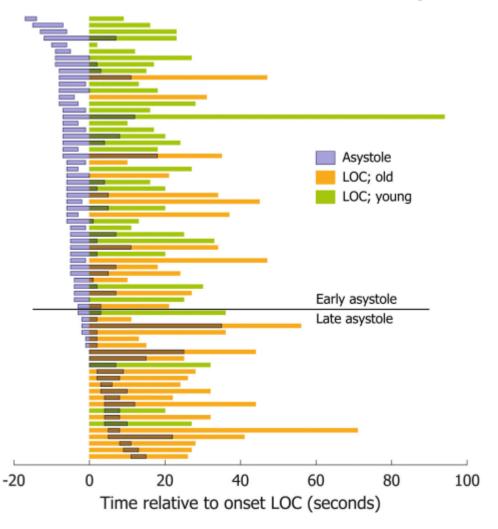
 Slow decrease of SV (venous pooling) gradually erodes BP

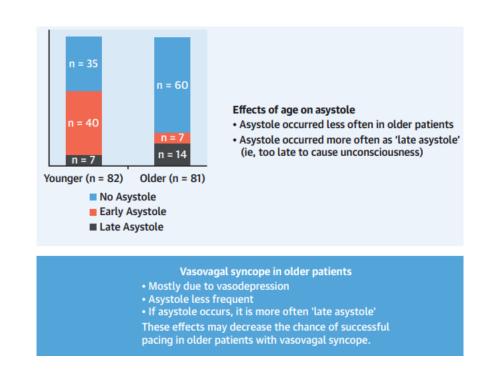
Late


 Cardioinhibition provides final blow to BP

Quantifizierung von Vasodepression u. Cardioinhibition

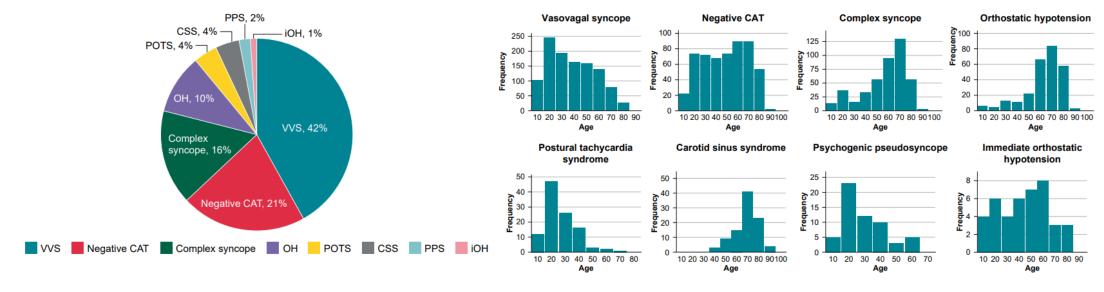
CI tritt erst recht kurz vor Eintritt der Bewußtlosigkeit auf!





Quantifizierung von Vasodepression u. Cardioinhibition

CI / Asystolie in Abhängigkeit vom Alter



Abklärung unklarer Synkopen in "Syncope Units"

Definitive Klärung durch autonome Tests

Unexplained Syncope explored by Cardiovascular Autonomic tests (CAT).

2663 patients studied (61% women, 52 yrs.). CAT included Tilt, Active Stand, CSM, Valsalva.

Diagnoses made by CAT plus those remaining undiagnosed

Age distribution by decade for diagnoses made

- □ CAT established cause of syncope in 79% of patients evaluated in a specialized syncope unit.
- ☐ Syncope without prodromes and CV comorbidities predicted failure of CAT to reveal syncop eaetiology.
- Patients with inconclusive CAT warrant further investigation e.g., using prolonged ECG monitoring.

Abklärung unklarer Synkopen in "Syncope Units"

Prädiktoren einer unauffälligen "autonomen Testung"

Table 2 Predictors of negative CAT

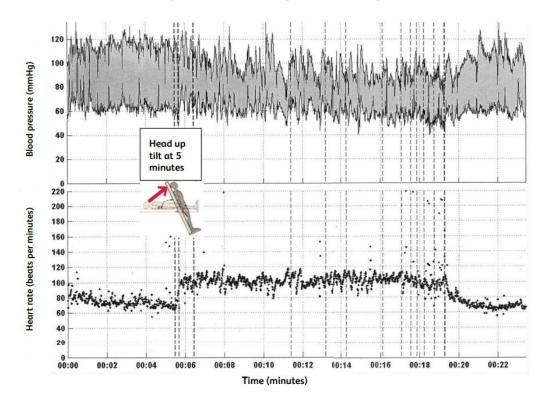
	Odds ratio	95% CI	P-value
Age (per 10-year increment)	1.06	1.02–1.11	0.008
Age at first syncope (per 10-year increment)	1.07	1.03–1.11	0.001
Gender	1.13	0.93-1.38	0.208
Supine SBP (per 10 mmHg)	1.06	1.01–1.10	0.013
Supine HR (per 10 b.p.m.)	1.12	1.04–1.20	0.002
No. of previous syncope episodes	1.00	0.99–1.00	0.650
Absence of prodromes	1.56	1.28-1.90	< 0.001
Palpitations	1.07	0.83-1.37	0.607
Dizziness	1.05	0.85-1.29	0.675
Supine syncope	0.90	0.70-1.16	0.424
Trauma	1.12	0.93-1.36	0.232
Hypertension	1.51	1.23-1.85	<0.001
Diabetes	1.93	1.41-2.63	<0.001
Heart failure	2.08	1.22-3.56	0.007
Atrial fibrillation	1.54	1.12-2.13	0.009
CAD	1.61	1.13-2.28	0.008

Table 3 Predictors of negative CAT in a logistic regression model adjusted for age and gender

	Odds ratio	95% CI	P-value
Age at first syncope	1.08	1.00–1.02	0.042
(per 10-year increment)			
Supine SBP	1.00	0.99-1.01	0.222
(per 10 mmHg increment)			
Supine HR	1.12	1.04-1.20	0.003
(per 10 b.p.m.)			
Absence of prodromes	1.48	1.20-1.83	<0.001
Hypertension	1.45	1.14-1.85	0.003
Diabetes	1.82	1.32-2.51	< 0.001
Heart failure	1.98	1.15-3.42	0.014
Atrial fibrillation	1.40	0.99-1.98	0.053
CAD	1.51	1.05-2.18	0.027

CAD, coronary artery disease; CAT, cardiovascular autonomic testing; HR, heart rate; SBP, systolic blood pressure.

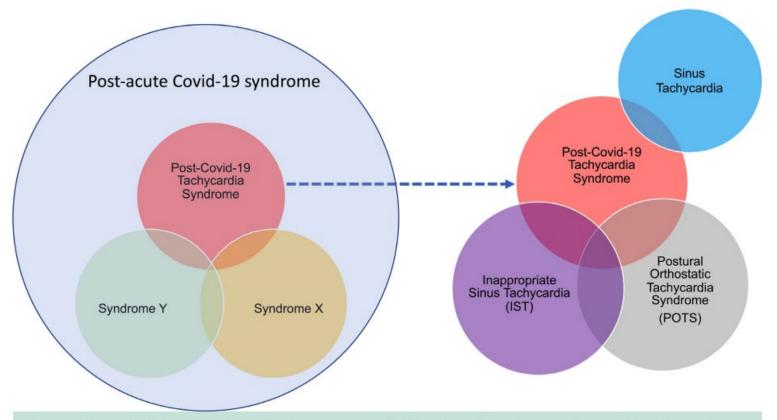
CAD, coronary artery disease; CAT, cardiovascular autonomic testing; HR, heart rate; SBP, systolic blood pressure.



Autonomic dysfunction in Long Covid

Klinische Probleme

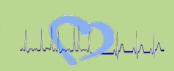
- > Orthostatische Intoleranz / Hypotonie
- > POTS (posturales Tachykardie-Syndrom)



Autonomic dysfunction in Long Covid

"Post-Covid Tachycardia Syndrome"

Figure Potential distinctions and overlaps between post-COVID tachycardia syndrome and other sub-syndromes in post-acute COVID-19 syndrome. COVID = coronavirus disease.


Systematische klinische Synkopendiagnostik

Haben klinische Scores (noch) eine Bedeutung?

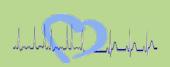
Definition – was ist KEINE Synkope?

Schwindel ist NICHT gleich Synkope !!! aber:

Schwindel kann (als Prodromalsymptom) Teilaspekt eines Synkopalen Ereignis sein

Schwindel u. Synkopen – Gemeinsamkeiten u. Unterschiede

- Eine Ursache findet sich bei ausgiebiger Anamnese und k\u00f6rperlicher
 Untersuchung (bei Synkope: "basic workup") in der Mehrzahl der F\u00e4lle
- Schwindel: häufig neurolog. / neurogene Ursache
- Synkope: <u>selten</u> neurologisch (allenfalls "neurogen" vermittelte zirkulatorische Genese (z.B. M. Parkinson)


Synkope im Kontext von TLOC (vorüberg. Bew.-Verlust)

Möglichkeiten KI-basierter Synkopen-Projekte

Hauptfragestellungen

Al could assist clinicians in separating true syncope from other forms of TLOC.

For true syncope cases, AI could assist in diagnosing the underlying etiology and differentiating benign from life-threatening causes.

Al may help identify patient characteristics and comorbidities that affect short- and long-term outcomes (eg, 30-d mortality, recurrent episodes, sudden death, total mortality, AND rehospitalization).

Accurate features (ie, input variables) and labels (ie, output variables) are necessary for supervised ML.

A global, multicenter, and multidisciplinary approach is needed, and a prospective dataset is ideal. Existing retrospective health-care datasets are inconsistent and imperfect from a ML perspective.

Al is a promising, wide-reaching clinical tool, but expectations for its ability to facilitate assessment, triage, and management of syncope patients must be delineated.

This table summarizes the key themes in this review article.

AI = artificial intelligence; ML = machine learning; TLOC = transient loss of consciousness.

Nutzen von KI beim Synkopen-Management

Herausforderungen

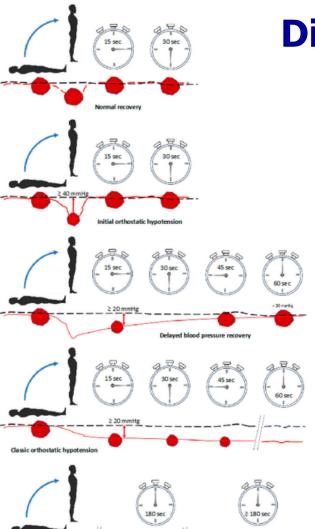
Challenges	Potential Solutions
Identifying syncope and its underlying cause relies on a subjective history	Use natural language processing tools to mine information from unstructured data sources (eg, clinical notes)
There is no gold standard for syncope	Use prospective datasets, focus only on basic diagnostic distinctions (eg, vasovagal syncope, orthostatic hypotension)
Electronic medical records often contain inaccurate information not suitable for supervised ML	Identify reliable features and known correct labels that are well-documented, use prospective datasets, and apply ML techniques (eg, ensemble approaches)
Adverse cardiovascular outcomes occur in a minority of patients, resulting in imbalanced classification	Utilize larger datasets; apply ML techniques (eg, upsampling, downsampling)
Low-, intermediate-, and high-risk is difficult to define, personalized outcomes must be clarified	Perform phenotypic profiling via unsupervised ML (eg, cluster analysis)
Predicting short- and long-term adverse events requires follow-up data	Utilize data from EDs, hospitals, ambulatory clinics, and syncope units
Syncope is a ubiquitous clinical entity that spans multiple settings and demographics	Develop multidisciplinary, multicenter, and international collaborations
Retrospective health-care datasets are imperfect	Use expert-validated prospective datasets
AI is complex; expectations may be inaccurate	Collaborate with AI experts
AI may cause medicolegal and ethical dilemmas relating to patient autonomy, safety, and privacy	Educate physicians and beware of AI-related clinical risks; collaborate with medical ethics experts

The main challenges and potential solutions in using AI to improve syncope management.

Cl. - II - - - - -

AI = artificial intelligence; ED = emergency department; ML = machine learning.

Anamnese bei Synkope:


Reden – reden – reden

Die sorgfältige Anamnese sollte unbedingt unter Verwendung einer ausführlichen Checkliste erfolgen, die standardisiert alle wichtigen Informationen zu erfassen hilft (Vorlagen s. Practical Instructions der ESC-Leitlinie oder den deutschen Kommentar). Je präziser und vollständiger die (Fremd-)Anamnese, um so effektiver sind weitere Diagnostik und Therapie. Institutionsspezifische Checklisten sind unabdingbar.

Differenzierung der orthostatischen Hypotonie

Frühe vs verzögerte Orthostase

Figure 2. Continuous blood pressure curves showing normal recovery and the diagnostic criteria for initial delayed orthostatic hypotension. A decrease in the size of the red spots indicates a drop in blood pressure.

Extrakardiale Vagusstimulation bei vasovagaler Synkope

via V. jugularis interna

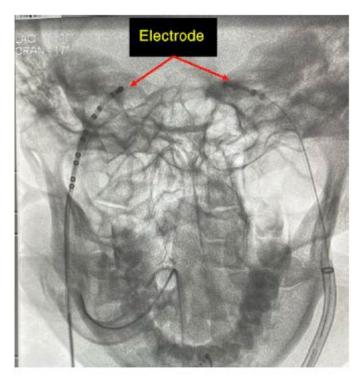
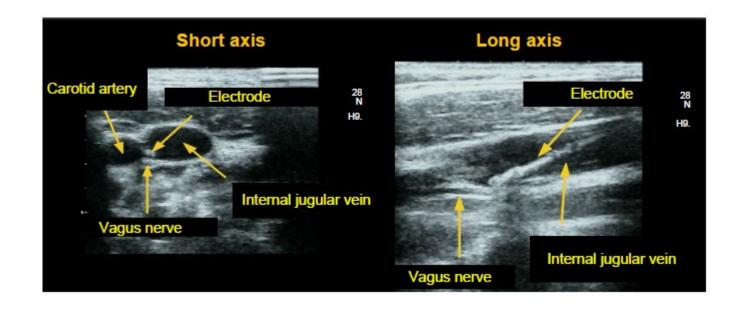



Figure 5 X-ray-guided extracardiac vagal stimulation. Proper position of the steerable multielectrode catheters inside the left and right internal jugular veins at the base of the skull (close to the jugular foramen) with posteromedial deflection.

Neues zur medikamentösen Therapie vasovagaler Synkopen

Midodrin (alpha Mimetikum)

Kardiovaskuläre Effekte des ANS

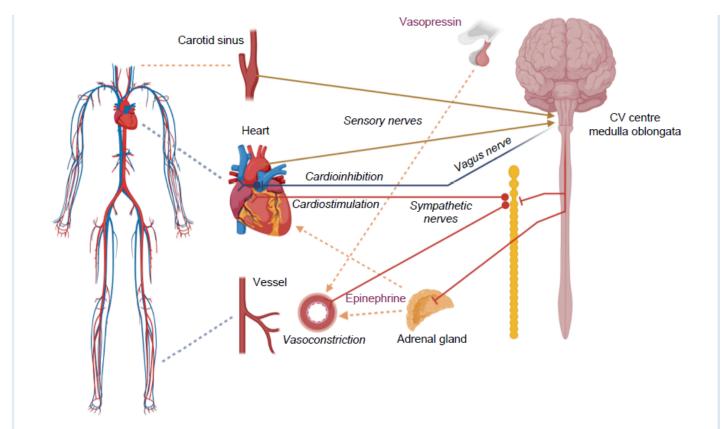


Figure 1 Schematization of cardiovascular regulation by the autonomic nervous system. Sensory nerves transfer signals from mechanoreceptors to cardiovascular (CV) centres in the medulla oblongata. Hypotension evokes a sympathetic response via activation of cardiac sympathetic nerves leading to tachycardia, increased inotropy and vasoconstriction of blood vessels, as well as increased release of catecholamines from the adrenal glands, and vasopressin from the hypophysis. In parallel, parasympathetic inhibition (via a reduction in the central vagal drive) contributes to tachycardia (vagal withdrawal). Conversely, reflex syncope starts with sympathetic withdrawal, vasodilation, and finally vagally mediated cardioinhibition.

